The Cost of Distributional Robustness
in Reinforcement Learning

— minimax-optimal sample efficiency

Laixi Shi

Computing & Mathematical Sciences
California Institute of Technology

WORDS 2023
The Fuqua School of Business, Duke University



Yuting Wei Yuxin Chen Matthieu Geist Yuejie Chi
UPenn UPenn Google Brain CcMU




Artificial intelligence (Al): an amazing future

The New ChatGPT Can ‘See’ and
“Talk.’ Here’s What It’s Like.

The image-recognition feature could have many uses, and the

voice feature is even more intriguing.
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Artificial intelligence (Al): an amazing future




Data is the key of Al
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Data is the key of Al

Radio Astronomy Robotics
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HOW TO MAKE DECISIONS.
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Decision-making

Biology

Healthcare

Creating Al for diverse applications using data science.



Decision-making Al: RL is promising
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RL holds great promise in the next era of artificial intelligence.



RL: pretty data-starved

ALL SYSTEMS 90” |
:

30 millions of moves 200 years of StarCraft video play

The agent need to explore a lot for difficult/complicated tasks.



Sample efficiency

A pressing need of sample efficiency:
® Enormous state/action space of the unknown environment

® Data collection can be costly, time-consuming, or high-stakes
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Sample efficiency

A pressing need of sample efficiency:
® Enormous state/action space of the unknown environment

® Data collection can be costly, time-consuming, or high-stakes
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Calls for design of sample-efficient RL algorithms!



Robustness

Robustness is a cornerstone of tackling with
® Uncertainty and noise of the environment

® Simulation-to-reality gaps and generalization requirements
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Robustness

Robustness is a cornerstone of tackling with
® Uncertainty and noise of the environment

® Simulation-to-reality gaps and generalization requirements
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Uncertainty Sim-to-real gaps Generalization

Calls for design of robust RL algorithms!



Overview

Understand and design RL algorithms in the face of sample
efficiency, scalability, and robustness.

Robust RL: [Shi et al. 23], [Shi and Chi. '22]

Theory | OnlineRL: [Lietal. '21]
Offline RL: [Shi et al. '22], [Li et al. '22]
Robust RL: [Ding et al. '23]

Practice | Offline RL: [Shi et al. ‘23], [Wang et al. '23]

Curriculum RL: [Huang et al. '22]

Sample efficiency

Scalability

Robustness
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Outline of this talk: robust RL

Background: Markov decision processes (MDPs)
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Outline of this talk: robust RL

Background: Markov decision processes (MDPs)
Problem formulation: distributionally robust RL

I: The cost of distributional robustness in RL

Standard RL: Learn the optimal
policy for a fixed environment?

Do robust RL need This work: solving robust RL may
—>

more samples need less samples
Robust RL: Learn the optimal J
policy with additional robustness O §
to environment shift ’
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Outline of this talk: robust RL

Background: Markov decision processes (MDPs)
Problem formulation: distributionally robust RL

I: The cost of distributional robustness in RL

Will solving robust RL be inherently harder than standard RL in
terms of sample requirements?

Il: Design sample efficient offline robust RL algorithm

Can we design a near-optimal algorithm that can learn under
simultaneous model uncertainty and limited historical datasets?

11



Background: Markov decision process



Markov decision processes

action
state s;

jat ~ m(|st)
___________ , agent ——
I

i1y = 7(St, 4 I

N

environment (¢ — —J

next state
st+1 ~ P([st, a)

® S: state space e A: action space

£
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Markov decision processes

action
state s;

jat ~ m(|st)
___________ , agent ——
I

i1y = 7(St, 4 I

N
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environment [« — —J

next state
st+1 ~ P([st, a)

e S: state space e A: action space
® r(s,a) € [0,1]: immediate reward

e 7(-|s): policy (or action selection rule)

P I
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Markov decision processes

state s¢ a
R , agent
i
i
] reward
Ty =T(Se,
L.f--+----J

&

next state
st+1 ~ P([st, a)

S: state space

action
~ m(-|t)

]
I
I

environment (¢ — —J

e A: action space

r(s,a) € [0,1]: immediate reward

7(-|s): policy (or action

selection rule)

P(-]s,a): transition probabilities

P I
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Value function

action
state s a; ~ 7(-|s¢) r r ro r r
------- o )= : o
| l
. riward I :> 80— S1 ‘I S2—; S3 ‘I S4 ‘|
T = T(St, at L A O, Y O
- T A

Stil ~ P("styat)

Value/Q-function function of policy 7:

VseS: VoP(s) :=E, p Zytrt | Sg=Ss
=0
V(s,a) eSx A: Q™F(s,a):=E,p thrt | so=s,a0=1a

t=0
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Value function

action

state s "~ (.
=T (]‘8‘) nooom T oo
| I I l I
reward S S So S 8.
éTt=7'(5t,at I :> ? :} ;1 :} T :} (3 } zl )
S A
sivr ~ P(|se,ar)
Value/Q-function function of policy 7:
o0
VseS: VvoP(s):=E ‘rilsg=s
. . 7w, P YT 0
=0
o0
V(s,a) eSx A: Q™F(s,a):=E,p E V're|so=s,a0=a
=0

® v €[0,1) is the discount factor; ﬁ is effective horizon
® Expectation is w.r.t. the sampled trajectory under 7w over P

14



Problem formulation: robust RL



Motivation: safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment

(Sim-to-real gaps / generalization requirements / random noise )

16



Motivation: safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment

(Sim-to-real gaps / generalization requirements / random noise )

Can we learn optimal policies that are robust to
model perturbations?

16



Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°y={pP: p(P,P°) <o}
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Modeling environment uncertainty
Uncertainty set of the nominal transition kernel P°:

U (P°y={P: p(P,P°) <o}
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Modeling environment uncertainty
Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

B I S AN uo(pP°)
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Modeling environment uncertainty
Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

N
D U (P°)

e Examples of p: f-divergence (TV, 2, KL...), Wasserstein
distance

® Under (s, a)-rectangularity: Ps, € U7 (FPY¢,)
17



Robust value/Q function

state s ~ (-
------- e =7 noomoomom o

reward |:> So I S1 S2 I S3 | S4 I
re = 1(s¢, ar I T ) v N P N > :} ¥

~— '~ '~ '~ - '~

i | environment — ag a as as a4
)

Sa|

s¢t1 ~ P(|st,ar)

Robust value/Q function of policy 7:

VseS: V™o(s):= inf  V™F(s)
Peue (Pe)
v : ™ ;= inf P
(s;a) €Sx A QM(s,a) Pe;{g<PO>Q (s,a)

Measures the worst-case performance of the policy when the
transition kernel P € uncertainty set U7 (P?).

18



Distributionally robust MDP

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Reinforcement
Learning

Robust MDP
Find the optimal robust policy n* that maximizes V™° J

(lyengar. '05, Nilim and El Ghaoui. '05)

19



Distributionally robust MDP

T
|

[

i
Reinforcement  |\\  [—______ —_—
Learning | |

Dynamic Programming
and Optimal Control

K

Robust MDP
Find the optimal robust policy n* that maximizes V™° J

(lyengar. '05, Nilim and El Ghaoui. '05)

e optimal robust value / Q function: V*7 := Ve QR = Q70
e optimal robust policy 7*(s) = argmax,. 4 @7 (s, a)

19



Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)
Robust Bellman’s optimality equation: the optimal robust

policy 7* satisfies

Q" (s,a) =r(s,a)+~  inf  (Psa, V"),
Pea€U?(Pg)

V*9(s) = max Q@™ (s,a)

20



Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust
policy 7* satisfies
Q"7 (s,a) =r(s,a) + inf (Ps,q, V),
Py a€U”(P2,)

V*9(s) = max Q@™ (s,a)

Solvable by distributionally robust value iteration (DRVI):

Q(s,a) + r(s,a) +v inf (Psa,V),
Psa€U”(P2,)

where V(s) = max, Q(s,a).

20



I: The curious sample complexity price of solving
distributionally robustness RL

— Benchmark with standard RL



Distributionally robust RL with a generative model

arbitra ry

(s,a)

Nominal Transttion
kernel

22



Distributionally robust RL with a generative model

arbitra ry

(s,a)

Nominal Transttion
kernel

Goal of robust RL: given D := {(s;,a;,7;,5,)}Y, from the
nominal environment P°, find an e-optimal robust policy 7 obeying

V*o V%,a <e

— in a sample-efficient manner

22



Model-based RL: empirical MDP + planning

( empirical \
nominal MDP
H N
|
|
||
H N
H N
|

||
- |
oy | [ [][]]

empirical

— Azar et al.,, 2013, Agarwal et al., 2019

planning T
J oracle
e

.g. policy iteration

\_ nominal P° /

Find policy based on the empirical MDP
N——

using, e.g., policy iteration

N———
(Po,r)

23



Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Planning by distributionally robust value iteration (DRVI):

~

Q(s,a) < r(s,a) +v  inf_ (Pyg, V),
Psa€U?(P2,)

~

where V(s) = max, Q(s, a).

24



Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Planning by distributionally robust value iteration (DRVI):

~

Q(s,a) < r(s,a) +v  inf_ (Pyg, V),
Psa€U?(P2,)

~

where V(s) = max, Q(s, a).

(inf ) compared to standard RL

Involves an additional inner optimization problem
Py o€U”(Pe,)

24



A curious open question: robust RL v.s. standard RL

Standard RL: Learn the optimal
' policy of the nominal MDP?
’

Which one need
more samples

-~
Nnmm;rr::':«smaw S ‘ l
: ~, 4
with dataset 1D A Robust RL: Learn the robust -

. 0
\ from nominal P / policy around the nominal MDP?

25



A curious open question: robust RL v.s. standard RL

Nowinal Transition
Rernel

with dataset D

\ from nominal P° )

Standard RL: Learn the optimal
policy of the nominal MDP?

Which one need
more samples

Robust RL: Learn the robust
policy around the nominal MDP?

Robustness-statistical trade-off? [s there a statistical premium
that one needs to pay in quest of additional robustness?

25



Prior art: robust RL with TV uncertainty

Sample complexity 4
S2A -

SA
T=aye

SA
(1 =)

SA(1-~) |

h

g2

Upper bound
[Panaganti and Kalathil]

Standard MDPs
upper & minimax lower bound

0

® |arge gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP

26



Prior art: robust RL with y? uncertainty

. 3
Sample complexity )
Upper bound S?Aa
S2A [Panaganti and Kalathil] (1-7)te
(=)
SA Standard MDPs
1=—qpe T N~~~ 77777 upper & minimax lower bound =
SA . Lower bound [Yang et al.]
(1 =n)e? I I 1 >
T

O(l—%) 0Q1)  O(1/(1-)

® |arge gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP

27



Our theorems under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with
radius o € [0, 1). For sufficiently small ¢ > 0, DRVI outputs a
policy T that satisfies V*? — V™ < e with sample complexity at

most
5 SA
(1 —~)?max{l —~,c}€?

ignoring logarithmic factors. In addition, no algorithm can succeed
if the sample size is below

. ((1 —w?mil{ll —w}@) |

® FEstablish the minimax optimality of DRVI for RMDP under
the TV uncertainty set over the full range of o.



When the uncertainty set is TV

Sample complexity 1

S2A a [ Upper bound ,
15 Panaganti and Kalathil
(1=7)te?
SA 1 Standard MDPs .
W N upper & minimax lower bound
—7)3¢
SA
Upper & minimax lower bound
SA (this work)
=P ]
SA(1—7) Lower bound [Yang et al.]
g2 ] l_5
0 1

29



When the uncertainty set is TV

Sample complexity 1

524
(1=7)te?

SA

SA
T ]

SA1-9) |

52

Upper bound
[Panaganti and Kalathil]

Standard MDPs
upper & minimax lower bound

SA

Upper & minimax lower bound
(this work)

Lower bound [Yang et al.]
1

>

0

RMDPs are easier to learn than standard MDPs.

>

1 g

29



Our theorems under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with
radius o € [0,00). For sufficiently small e > 0, DRVI outputs a
policy T that satisfies V*° — V™7 < e with sample complexity at

most
5 SA(1+0)
(1 —n)te?
ignoring logarithmic factors.

30



Our theorems under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with
radius o € [0,00). For sufficiently small e > 0, DRVI outputs a
policy T that satisfies V*° — V™7 < e with sample complexity at

most
5 SA(1+0)
(1 —n)te?
ignoring logarithmic factors.

Theorem (Lower bound, Shi et al., 2023)

In addition, no algorithm succeeds when the sample size is below

Q (%) ifoS1—vy
~ min{l»(l—g—y‘gf(1+a)4}52) otherwise

30



When the uncertainty set is x> divergence

Y 3
Sample complexity
Upper bound S Ao
S2A [Panaganti and Kalathil] (1 —7)te ——
(1 - 7)452 (this work)
Upper bound SAo i
(this work) (T=m)te?
SA .
(1—7)te?
SAc SAo
(=1 +0) &2
SA Standard MDPs
3.2 | O \TTTTmEEmEmEmae upper & minimax lower bound =
(1=7)%
i - Lower bound [Yang et al.]
(1 —7)e? 1 1 1

O(l—v) o1
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When the uncertainty set is x> divergence

Sample complexity 4
Upper bound S Ao
S2A [Panaganti and Kalathil] (1 —7)te ——
(1 - 7)452 (this work)
Upper bound SAo i
(this work) (T=m)te?
SA .
(1—7)te?
SAc SAo
(T=mt1+0)* 2
SA Standard MDPs
3.2 | O \TTTTmEEmEmEmae upper & minimax lower bound =
(1=7)%
i - Lower bound [Yang et al.]
(1 —7)e? 1 1 1 >
g

RMDPs can be mu

O(1—7) o(1/(1 =)

ch harder to learn than standard MDPs.

31



Why robust RL is easier/harder than standard RL?



Technical challenge: robust RL v.s. standard RL

e Control the error terms based on estimate P°:
Standard RL: g = ’POXA/ — 13017‘

linear w.r.t. Po— PO

inf  PVZ — inf  PVY

Robust RL:  rop = R rob
PeUg(P°) Peug (Po)

complex form w.r.t. Po—P0 due to inner problem over Uug ()

33
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Technical challenge: robust RL v.s. standard RL

e Control the error terms based on estimate P°:
Standard RL: g = ’POXA/ — 13017‘

linear w.r.t. Po— PO

inf  PVZ — inf  PVY

Robust RL:  rop = R rob
PeUg(P°) Peug (Po)

complex form w.r.t. Po—P0 due to inner problem over Uug ()

® Main factors:
® the error function (drL or dyop) W.r.t. model estimate error
Po — ﬁO.

® the range of value functions V or V.2, .

Using same size of samples (same P°), smaller error — easier taskJ

33



Intuition for tighter bound

e TV:
* linear dependency w.r.t P° — PO §,op = |P°Viop — PViop

® the range of f/,gb contracts rapidly as o grows — smaller than

~

the range of V' in standard RL

34
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the range of V' in standard RL

smaller range of ﬁgb — RMDPs are easier than standard MDPs J
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® linear dependency w.r.t P° — P%: §.op = |P°Viop — P°V,op

® the range of f/,gb contracts rapidly as o grows — smaller than

~

the range of V' in standard RL

smaller range of I//\'rgb — RMDPs are easier than standard MDPs J

o Xz:

® Non-linear and sensitive w.r.t. P° — P9 — even if P° — P0 is
small, the error term 6,0, can explode.

® the range of f/,gb can be similar to V'

34



Intuition for tighter bound

e TV:
® linear dependency w.r.t P° — P%: §.op = |P°Viop — P°V,op

® the range of ‘A/rgb contracts rapidly as o grows — smaller than

~

the range of V' in standard RL

smaller range of Vrgb — RMDPs are easier than standard MDPs J

o Xz:

® Non-linear and sensitive w.r.t. P° — P9 — even if P° — P0 is
small, the error term 6,0, can explode.

® the range of f/,gb can be similar to V'

Complicated error terms — RMDPs are harder than standard
MDPs }

34



Takeaway: statistical implications of robustness

Sample complexity sample complexity
Upper bound 5240
52 naganti M=
per bound S52A | (Panaganti and Kalathil 1-7) ——
[Panaganti and Kalathil] (1—7y)e? (this work)
Upper bound SAo
(this work) =y
sS4 sa 4
=) (1—9)te?
. S0 s
T T
Upper & minimax lower bound
S4 (Ehisork) SA Standard MDPs
T2 pupwrn i pts At fekd r & minimax lower bound ™
T=7) ; T uppe ax lower bou
'
'
) ' 54
SA(L-7) | Lower bound [Yang et al.] a Lower bound [Yang et al.]
—Q1_ | . == T . N -
0 0o1-7 oW 1 o(l-y) 0()  0@/1-7)

TV uncertainty x? uncertainty

RMDPs are neither necessarily harder nor easier than standard RL
in terms of sample requirements.

— depend heavily on the shape and size of the uncertainty set



Takeaway: statistical implications of robustness

sample complexity sample complexity ™
Upper bound / ld
2 Ty
Upper bound 524 | (Panaganti and Kalathil (=7 Lower bound

A 4 PP —_— =)
- [Panaganti and Kalathil) (1—7y)te (this work)

Upper bound S
(this work) =

A Standard MDPs 54
upper & minimax lower bound ==~ e

Tz
sa
K Upper & minimax lower bound
SA (this work) SA Standard MDPs
122 1 T 5 b - r & mi rbound =
1) ; == upper & minimax lower bound
B
'
SA(1— | SA
k ) I Lower bound [Yang etal] _ Lower bound [Yang et al.]
R 1 1 1 =) L L n
o o
0 0(1-9) o(1) 1 o(1-7) o@)  0(1/1-7)

TV uncertainty x? uncertainty

RMDPs are neither necessarily harder nor easier than standard RL
in terms of sample requirements.

— depend heavily on the shape and size of the uncertainty set




II: Provable sample efficiency in offline robust RL



Offline/Batch RL

® Having stored tons of history data

e Collecting new data might be expensive or time-consuming

THECOMING INAUTONOMOUS VEHICLES

ﬂ)f,a

AN A0S\

, ﬂ z N = A PERDA..EACHDAY "
NS 3 L z

"]

- e

L

medical records data of self-driving clicking times of ads

37



Offline/Batch RL

® Having stored tons of history data

e Collecting new data might be expensive or time-consuming

THECOMING INAUTONOMOUS VEHICLES

— kﬁ ‘,‘ AR e ]
z. . ) 1 L mrms =
é 3 .

T . N> I

Y

£ ) L
Rl TTRT D) v

3
% = - @ -

medical records data of self-driving clicking times of ads

i

Can we design algorithms based on only history data?

37



Distributionally robust offline RL

(s,a) ~ d°
bNOt : Nominal Transition
arbitrary! koermel

38



Distributionally robust offline RL

(s,a) ~ d°
bNOt : Nominal Transition
arbitrary! koermel

Goal of robust offline RL: given D := {(s;, a;, 7, s})}}*., from the
nominal environment PP, find an e-optimal robust policy 7 obeying

V5 (p) = V7 (p) <€

— in a sample-efficient manner

38



Prior art under full coverage: KL uncertainty
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Prior art under full coverage: KL uncertainty

sample
. A
complexit R R
P Y | N / N9
~ \b 6
N o F
S g§ ¥
s TN \\
T E.N/(\
S 8 5 /i
L § g I
N - £ &
= T 0 3
<R

Questions: Can we improve the sample efficiency and
allow partial coverage?

39



How to quantify the compounded distribution shift?
Robust single-policy concentrability coefficient

. min{d”*7P(s,a), %}
Crp = max 5

(s,a,P)ES X AxU7 (P°) d°(s,a)
occupancy distribution of (7*, U7 (P°)) H

occupancy distribution of D

where d™" is the state-action occupation density of m under P.

v

40



How to quantify the compounded distribution shift?
Robust single-policy concentrability coefficient

. min{d”*’P(s,a), %}
Crp = max 5

(s,a,P)ES X AxU7 (P°) d°(s,a)
occupancy distribution of (7*, U7 (P°)) H

occupancy distribution of D

where d™" is the state-action occupation density of m under P.

&

® captures distributional shift due
to behavior policy and historical dataset D
environment. S

® CF, < A under full coverage.




DRVI with pessimism

Distributionally robust value iteration (DRVI) with LCB:

@(s,a) < max {r(s,a) +v  inf PV — b(s,a; V) , 0},
PEL{”(P; ) %z—’
uncertainty penalty

where V(s) = max, Q(s, a).

Key innovation: design the penalty term to capture the
uncertainty of both model and the data in robust RL:

inf PV - inf PV
Peus(pe,) Peue(Pe,)

No closed form w.r.t. Ps"’a—ﬁs‘”a due to U7 (-)

41



Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB
outputs an e-optimal policy with high prob., with sample

complexity at most
5(_ SCh
Px (1 —7)%02e? )’

min

where Px.  is the smallest positive state transition probability of
the nominal kernel visited by the optimal robust policy 7*.
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Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB
outputs an e-optimal policy with high prob., with sample

complexity at most
0 (e i)
P =) )’

where Px.  is the smallest positive state transition probability of
the nominal kernel visited by the optimal robust policy 7*.

® scales linearly with respect to S

® reflects the impact of distribution shift of offline dataset
(Cr,) and also model shift level (o)
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Minimax lower bound

Theorem (Shi and Chi’22)

1 1
Suppose that = > %, 8§ >log (125), Crop > 8/S, 0 < log 11

S Tyios = there exists some MDP and batch dataset
1—v
such that no algorithm succeeds if the sample size is below

5 SCr,
P*. ( 7)20-2 62 :

min

and e <




Minimax lower bound

Theorem (Shi and Chi’22)

1 1
Suppose that = > %, 8§ >log (125), Crop > 8/S, 0 < log 11

S Tyios = there exists some MDP and batch dataset
1—v
such that no algorithm succeeds if the sample size is below

5 SCr,
P*. ( 7)20-2 62 :

min

and e <

® the first lower bound for robust MDP with KL divergence

® Establishes the near minimax-optimality of DRVI-LCB up to
factors of 1/(1 — )




Compare to prior art under full coverage
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Compare to prior art under full coverage

sample
complexit R R
P y | NG N3
% /%
& WS
~ &~ .’\7 Qz
—_ ~ N
© / ~
bd ~
U — It N/ o~
> A & /
L T e ™
N o &2
X X &S
5 T~ ° A
./

We develop the first minimax lower bound on this
Our DRVI-LCB method is near minimax-optimal!
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Concluding remarks



Statistical implications of distributionally robustness

sample complexity sample complexity )
Upper bound 5240
2 =
s S%A | (Panaganti and Kalathil ) e

T [ Upper bound [Clavier et al| —— (T=n)te? (this work)
1
1 Upper bound : Sdo
(this work) =
! sa_
SA . Standard MDPs . LN
T ] upper & minimax lower bound -
i sa S0
(e =
Upper & minimax lower bound §
SA SA Standard MOPs

[ — = upper & minimax lower bound ™

Lower bound [Yang et al. Lower bound [Yang et al]

SA(L=7)

o 0

.
0 o(1-7 o 1 o(1-v 0@ o@/(1-7)

TV uncertainty x? uncertainty

RMDPs are neither necessarily harder nor easier than standard RL
in terms of sample requirements.

— depend heavily on the shape and size of the uncertainty set



Near-optimal robust offline RL

sample‘
complexit R R
P y IN(U N3
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We develop the first minimax lower bound on this
Our DRVI-LCB method is near minimax-optimal!

47



References

L. Shi, G. Li, Y. Wei, Y. Chen, M. Geist, and Y. Chi, “The curious price of
distributional robustness in reinforcement learning with a generative model,”
arXiv preprint arXiv:2305.16589, 2023.

L. Shi, R. Dadashi, Y. Chi, P. S. Castro, and M. Geist, “Offline reinforcement
learning with on-policy Q-function regularization,” European Conference on
Machine Learning, 2023.

G. Li, L. Shi, Y. Chen, and Y. Chi, “Breaking the sample complexity barrier to
regret-optimal model-free reinforcement learning,” Information and Inference: A
Journal of the IMA, vol. 12, no. 2, pp. 969-1043, 2023.

W. Ding*, L. Shi*, Y. Chi, and D. Zhao, “Seeing is not believing: Robust
reinforcement learning against spurious correlation,” In submission. A short
version at ICML Workshop on Spurious Correlations, Invariance and Stability,
2023.

L. Shi and Y. Chi, “Distributionally robust model-based offline reinforcement
learning with near-optimal sample complexity,” arXiv preprint arXiv:2208.05767,
2022.

49



References

® Y. Wang, M. Xu, L. Shi, and Y. Chi, “A trajectory is worth three sentences:
Multimodal transformer for offline reinforcement learning,” The Conference on
Uncertainty in Artificial Intelligence, 2023.

® L. Shi, G. Li, Y. Wei, Y. Chen, and Y. Chi, “Pessimistic Q-learning for offline
reinforcement learning: Towards optimal sample complexity,” in International
Conference on Machine Learning. PMLR, 2022, pp. 19967-20 025.

® G. Li, L. Shi, Y. Chen, Y. Chi, and Y. Wei, “Settling the sample complexity of
model-based offline reinforcement learning,” arXiv preprint arXiv:2204.05275,
2022.

® P. Huang, M. Xu, J. Zhu, L. Shi, F. Fang, and D. Zhao, “Curriculum
reinforcement learning using optimal transport via gradual domain adaptation,”
Advances in Neural Information Processing Systems, 2022.

50



Thank you!

sample complexity

SA
(T=9)te

1
1
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SA

SA(L=7)

[ Upper bound [Clavier et al] ——

Standard MDPs
upper & minimax lower bound =™~

Upper & minimax lower bound

Lower bound [Yang et al.

L
0 01-7)

o)

TV uncertainty

RMDPs are neither necessarily harder nor easier than standard RL

1

[
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sample complexity )
Upper bound 5%Ag
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x? uncertainty

in terms of sample requirements.
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— depend heavily on the shape and size of the uncertainty set



