
Provable Convolutional Sparse Coding via Nonconvex Optimization
Laixi Shi and Yuejie Chi

Department of Electrical and Computer Engineering, Carnegie Mellon University

Motivation

Convolutional Sparse Coding is a classical inverse problem that ubiquitously appears
in various areas:
• Image Processing (Deblurring)
• Communications (Blind Channel Estimation)
•Array processing (Blind Gain and Phase Calibration)

Problem Formulation

• Let yi ∈ Rn be the convolution between a filter g ∈ Rn, and a sparse input xi ∈ Rn:
yi = g ~ xi = C(g)xi, i = 1, . . . , p, (1)

where the total number of observations is p, ~ denotes the circular convolution.
• C(g) ∈ Rn×n is the circulant matrix spanned by g = [g1, . . . , gn]T , given as

C(g) =


g1 gn · · · g2
g2 g1 · · · g3
... ... . . . ...
gn gn−1 · · · g1

 .
• Denote Y = [y1, . . . ,yp] ∈ Rn×p and X = [x1, . . . ,xp] ∈ Rn×p, the signal model can be
rewritten as

Y = C(g)X.
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Goal: Provide a computationally-efficient algorithm with theoretical guarantees to recover
both the signals {xi}pi=1 and the kernel g from their convolution {yi}pi=1, up to a circulant shift
and a scaling factor.
• yi = (βSj(g)) ~ (β−1S−j(xi)), where Sj(·) is a circulant shift by j positions, j = 1, . . . , n,
and β 6= 0 is an arbitrary scalar.

A Nonconvex Approach via Manifold Gradient Descent

• Observation: Assuming C(g) is invertible [Li, Lee, and Bresler], there exists a unique inverse
filter ginv ∈ Rn such that C(g)−1 := C(ginv), which allows us to convert the bilinear form (1)
into a linear form,

C(ginv)yi = C(ginv)C(g)xi = xi, i = 1, . . . , p.
• Due to the sparsity of {xi}pi=1, we are motivated to recover ginv by seeking a vector h that
minimizes the cardinality of C(h)yi = C(yi)h:

min
h∈Rn

1
p

p∑
i=1
‖C(yi)h‖0 .

•Problematic with issues: (1) has a trivial solution h = 0; (2) computationally intractable.
• We propose an alternative nonconvex formulation with pre-conditioning:

min
h∈Rn

f (h) = 1
p

p∑
i=1

ψµ(C(yi)Rh) s.t. ‖h‖2 = 1,

where R =
[

1
θnp

∑p
i=1 C(yi)>C(yi)

]−1/2
is a preconditioning matrix depending only on {yi}pi=1,

and ψµ(z) = µ log cosh(z/µ) is a convex surrogate with µ controlling the smoothness.
• Manifold Gradient Descent (MGD):

ht+1 := (ht − η∂f (ht)) / ‖ht − η∂f (ht)‖2
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• Motivated by such surprising success of MGD: can we establish theoretical guarantees
of MGD to recover the filter for MSBD?

Theoretical Analysis

Assumptions: Our theoretical guarantee relies on the following assumptions:
A1) The input sparse signal X = Ω�R is assumed of a Bernoulli-Gaussian model,

•Ω is an i.i.d. Bernoulli matrix with parameter θ,
•R is an independent random matrix with i.i.d. random Gaussian variables drawn from N (0, 1).

A2) C(g) is invertible with the condition number κ, i.e. κ = σ1(C(g))/σn(C(g)).

Theorem 1 (Benign Geometry of f (h)): Under the assumptions, let w = [h1, · · · , hn−1]>
and φ(w) = f (h). For any θ ∈ (0, 1

3), when µ . min{θ, n−3/4 log−1 n} and the number
of measurements p & κ8n4.5 up to logarithmic factors, it holds with high probability that for

h(w) ∈ S (n+)
1/(4 log n), where S

(i±)
ξ =

{
h : hi ≷ 0, h2

i

‖h\i‖2
∞

> 1 + ξ

}
:

(large gradient) w>∇φo(w)/ ‖w‖2 & θ/ log n, if ‖w‖2 > µ/(4
√

2),

(strong convexity) ∇2φo(w) � nθ

5
√

2πµ
I, if ‖w‖2 ≤ µ/(4

√
2).

In addition, the function φ(w) = f (h) has exactly one unique local minimizer w? near 0.
• Directly applying Theorem 1 for S (n+)

1/(4 log n) to 2n subsets {S (i±)
1/(4 log n)}ni=1, we observe that

there is no saddle points or spurious local minimizers except those corresponding to shift and
sign-flipped ground truth with high probability.

(a) orthogonal filter C(g1) (b) general filter C(g2) (c) general filter C(g2)
no pre-conditioning no pre-conditioning with pre-conditioning

Theorem 2 (Convergence Guarantee for MGD): Instate the assumptions of Theorem
1, with O(log n) independent random initializations selected uniformly over the sphere, it is
guaranteed to obtain a vector h(T ) that accurately recover ginv up to scale and shift ambiguity:

min
j∈[n]
‖h(T ) ± Sj(ginv)‖2 .

κ4

θ2

√√√√n log3 p log2 n

p
+ ε

for any ε > 0, in T . n3 log p
µ2θ2 + n log p

θ2 log
(
µ
ε

)
iterations of MGD.

Numerical Experiments

Blind deconvolution with Synthetic data:
•The entries of X are drawn i.i.d. from a Bernoulli-Gaussian distribution with sparsity θ.
•We declare the recovery is successful if ‖C(g)Rh(T )‖∞/‖C(g)Rh(T )‖2 > 0.99.
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(a) ours (n, p) (b) [Li and Bresler] (n, p)
2D Image Blind Deconvolution:
•The size of the observations are n = 128× 128, θ = 0.1, p = 1000 (significantly < n).

(a) true image (b) recovery via ours (c) recovery via [Li and Bresler]
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